A REPRESENTATION FOR A CLASS OF LATTICE ORDERED GROUPS

BY F. D. PEDERSEN(1)

In a lattice ordered group (l-group), the set of regular subgroups forms a root system in the complete lattice of all convex l-subgroups. Conrad, Harvey, and Holland [4] have shown that an abelian l-group can be represented as an l-group of real-valued functions on any plenary subset of its root system. This paper is concerned with further investigation of the root system leading to a representation for a class of l-groups based on the decomposition of plenary subsets into connected parts (Definition 1). To accomplish this, the concept of Γ -indecomposable l-groups (Definition 8) is introduced. The major theorem (Theorem 15) then presents necessary and sufficient conditions that an l-group be representable as a full subdirect sum of a cardinal sum of Γ -indecomposable l-groups of the first kind.

- 1. Here we present some of the basic notation, definitions, and theorems relative to the study of *l*-groups. The uninitiated reader might also want to refer to either [1] or [5] whereas a person knowledgeable in this field might prefer to skip this section.
- (i) The positive elements of an *l*-group G are denoted by G^+ . From [5, p. 70], it can be deduced that for g, $h \in G^+$, there exist \bar{g} and \bar{h} with $\bar{g} \wedge \bar{h} = 0$ such that $g = g \wedge h + \bar{g}$ and $h = g \wedge h + \bar{h}$.
- (ii) C(A) denotes the convex *l*-subgroup generated by a nonvoid subset $A \subseteq G$. For convenience, $C(\{g\}) = C(g)$.
- (iii) $\Gamma(G)$ denotes the lattice of all convex *l*-subgroups of G. By [3, Introduction], $\Gamma(G)$ forms a complete distributive sublattice of the lattice of all subgroups of G. Normal convex *l*-subgroups are called *l*-ideals. A regular subgroup is an element of $\Gamma(G)$ which is maximal with respect to not containing some $0 \neq g \in G$. For each nonzero $g \in G$, the completeness of $\Gamma(G)$ assures the existence of at least one regular subgroup maximal without containing g [3, Proposition 3.3]. Similarly, if $x \notin K \in \Gamma(G)$, then there exists $H \in \Gamma(G)$ which is maximal without containing g and such that $g \in G$. Thus, as noted in [3], the regular subgroups of g generate the lattice $\Gamma(G)$.
- (iv) Given $M \in \Gamma(G)$, $M \neq G$, M is a prime subgroup if M satisfies any one of the following equivalent conditions [3, Theorem 3.2]:
 - (a) If $A, B \in \Gamma(G)$ such that $A \cap B \subseteq M$, then $A \subseteq M$ or $B \subseteq M$.
 - (b) If $a, b \in G^+$ and $a, b \notin M$, then $a \land b \notin M$.

Received by the editors September 14, 1967 and, in revised form, May 28, 1968.

⁽¹⁾ This work is in part a portion of the author's doctoral dissertation written under the direction of Professor A. H. Clifford, Tulane University [6].

- (c) M is an intersection of a chain of regular subgroups.
- (d) The convex l-subgroups of G which contain M form a chain.

Also, if M is normal, then each of the above is equivalent to

- (e) G/M is totally ordered.
- (v) $\Gamma_0(G)$ denotes the set of all prime subgroups of G. $\Gamma_1(G)$ denotes the set of all regular subgroups of G. It follows from property (iv-c) that $\Gamma_1(G) \subseteq \Gamma_0(G)$.
- (vi) A root system is a partially ordered set S with the property that for any $s' \in S$, the set of all $s \in S$ such that $s' \leq s$ is a totally ordered subset. $\Gamma_0(G)$ and $\Gamma_1(G)$ are root systems by property (iv-d).
- (vii) For a prime subgroup M, it follows from property (iv-b) that if $0 \le a \land b \in M$, then $a \in M$ or $b \in M$. Thus, as an immediate extension of [4, Lemma 4.5] to the nonabelian case, we have
- LEMMA 0. If 0 < x and $0 \le y$ are disjoint elements of G (i.e., $x \land y = 0$) and if $C \in \Gamma_1(G)$ is maximal without containing x, then $y \in C$ and no $H \in \Gamma_1(G)$ maximal without y is contained in C.
- (viii) A subset $\Delta \subseteq L_1(G)$ is *plenary* if Δ is an upper class (a lattice dual ideal) in $\Gamma_1(G)$ such that $\bigcap \{H : H \in \Delta\} = \{0\}$.
- (ix) For $H \subseteq G$, $H \neq \emptyset$, the polar of H, H^* , is the set of all $x \in G$ such that $|x| \land |y| = 0$ for all $y \in H$. H^* is a convex l-subgroup [5] or [7].
 - (x) G is a lexicographic extension of $H \in \Gamma(G)$ if
 - (a) H is normal in G;
 - (b) $x \in G^+ H$ implies y < x for all $y \in H^+$; and
 - (c) G/H is totally ordered.
- $K \in \Gamma(G)$ is bounded if there exists $x \in G^+$ such that y < x for all $y \in K^+$. If $K \in \Gamma(G)$ is a lexicographic extension of a proper *l*-ideal of itself, and if K is unbounded in G, then $G = K \oplus K^*$ [2].
- (xi) A value of $0 \neq g \in G$ is a regular subgroup which is maximal without containing g. Γg denotes the set of all values for $g \in G$. If $0 \neq g \in G$ has only one value, then we call both g and its value *special*. If g is special with G_{α} as its value, then there exists $N \in \Gamma(G)$ with C(g) a lexicographic extension of N such that $G_{\alpha} = C(g)^* \oplus N$. For each $G_{\alpha} \in \Gamma_1(G)$, the notation G^{α} refers to $\bigcap \{H \in \Gamma(G); G_{\alpha} \text{ is proper in } H\}$. Thus, G^{α} is the unique smallest element of $\Gamma(G)$ which properly contains G_{α} [3, Theorem 3.1]. If g is special with G_{α} as its value, then $G^{\alpha} = C(g)^* \oplus C(g)$ [3]. $G_{\alpha} \in \Gamma_1(G)$ is called essential if there exists $0 \neq g \in G$ such that all values of g are contained in G_{α} .
- (xii) Using the terminology of (xi), an equivalent definition for a plenary subset $\Delta \subseteq \Gamma_1(G)$ is
 - (a) If $G_{\beta} \in \Delta$ and $G_{\beta} \subseteq G_{\alpha}$, then $G_{\alpha} \in \Delta$; and
 - (b) Each $0 \neq g \in G$ has a value in Δ [4].
- (xiii) $\Pi\{H_i: i \in I\}$ denotes the large cardinal sum of the l-groups, H_i , with I as an arbitrary index set. $\Sigma\{H_i: i \in I\}$ denotes the small cardinal sum. Order is

defined by $0 \le x$ if and only if $0 \le x_i$ for all $i \in I$. A full subdirect sum is a subdirect sum which contains the small cardinal sum. For each $i \in I$, $\overline{H_i}$ denotes the *l*-isomorphic copy of H_i in a full subdirect sum of the H_i [7]. G is said to be cardinally indecomposable if G can not be represented as a cardinal sum of two nonzero convex l-subgroups of G.

2. DEFINITION 1. G_{α} , $G_{\beta} \in \Gamma_1(G)$ are connected $(G_{\alpha} \sim G_{\beta})$ if and only if there exists $G_{\phi} \in \Gamma_1(G)$ such that G_{α} , $G_{\beta} \subseteq G_{\phi}$.

Proposition 2. \sim is an equivalence relation on $\Gamma_1(G)$.

Proof. For transitivity, let $G_{\alpha} \sim G_{\beta}$, $G_{\beta} \sim G_{\gamma}$. By definition there exists G_{δ} containing G_{α} , G_{β} and G_{ε} containing G_{β} , G_{γ} . Since $\Gamma_1(G)$ is a root system, G_{δ} and G_{ε} are comparable. Thus, max $\{G_{\delta}, G_{\varepsilon}\}$ contains G_{α} , G_{γ} .

DEFINITION 3. A connected part of $\Gamma_1(G)$ is an equivalence class of $\Gamma_1(G)$ under \sim and will be denoted by Γ_i .

Note that if we restrict \sim to a plenary subset $\Delta \subseteq \Gamma_1(G)$, then the resulting classes will be of the form $\Delta_i = \Gamma_i \cap \Delta$ for all i such that $L_i \cap \Delta \neq \emptyset$. It should also be noted that the Δ_i -classes are maximal directed subsets.

DEFINITION 4. (a) Δ , a plenary subset, is said to be *connected* if there is only one equivalence class. (In other words, a plenary subset Δ is connected if and only if Δ is directed.)

- (b) G is Γ -indecomposable if there exists a plenary subset of $\Gamma_1(G)$ which is connected.
- (c) An element D in Δ_i is dominating with respect to Δ_i if for each G_{α} in Δ_i either $D \subseteq G_{\alpha}$ or $G_{\alpha} \subseteq D$.
- (d) G is Γ -indecomposable of the first kind if there exists a connected plenary subset of $\Gamma_1(G)$ which contains a dominating element.
- (e) G is Γ -indecomposable of the second kind if G is Γ -indecomposable but there does not exist a connected plenary subset of $\Gamma_1(G)$ with a dominating element.

THEOREM 5. If G is Γ -indecomposable, then G is cardinally indecomposable.

Proof. Assume $G = A \oplus B$. Since any G_{α} which is regular is also prime, and since $A \cap B = \{0\} \subseteq G_{\alpha}$, it follows that G_{α} contains either A or B but not both. We need only consider positive elements of G; and any $g \in G^+$ can be expressed uniquely as x+y where $0 \le x \in A$, $0 \le y \in B$. Since any $x \in A^+$ is disjoint from any $y \in B^+$, Lemma 0 quoted in §1 may be applied; and, thus, the values for $x \in A$ are noncomparable to the values for $y \in B$. Thus, any plenary subset Δ can be written as the union of two disjoint sets, Δ_1 and Δ_2 , such that Δ_1 contains values of elements in A and A contains values of elements in A. But, since A is assumed to be connected, A is contained in one of A or A. Thus, either the elements of A or the elements of A have no values in A, which implies that either A or B is zero since A is plenary.

DEFINITION 6. $0 < g \in G$ is a weak unit if $0 < h \land g$ for all $h \in G^+$.

A nonunit is an element 0 < x for which there exists 0 < y such that $x \land y = 0$.

THEOREM 7. If G is an l-group, then the following are equivalent:

- (a) G is Γ -indecomposable of the first kind;
- (b) G contains a weak unit which is special;
- (c) $\Gamma_1(G)$ contains a dominating element;
- (d) G is a lexicographic extension of a proper l-ideal.
- **Proof.** (a) \rightarrow (b). Let Δ be a connected plenary subset of $\Gamma_1(G)$ with dominating element, G_{α} . Since the values of $0 < x \in G^{\alpha} G_{\alpha}$ with respect to Δ form a trivially ordered subset of Δ , x has only G_{α} as value in Δ ; and, thus, x is special [4, Theorem 3.7]. Assume $y \wedge x = 0$. It follows from the lemma quoted in §1 that y has no value comparable to G_{α} . Since G_{α} is dominating, y has no value in Δ ; and, thus, y = 0. Therefore, x is a weak unit by definition.
- (b) \rightarrow (c). Let x be a weak unit which is also special with G_{α} as its only value. Then, $G_{\alpha} = C(x)^* \oplus N$ where N is the maximal convex I-subgroup of C(x). Since x is a weak unit, $C(x)^* = \{0\}$; and, thus, $G_{\alpha} = N \subset C(x)$. Let $G_{\beta} \in \Gamma_1(G)$. If $x \notin G_{\beta}$, then x has a value containing G_{β} . Since G_{α} is the only value for x, $G_{\beta} \subseteq G_{\alpha}$. If $x \in G_{\beta}$, then $G_{\alpha} \subseteq C(x) \subseteq G_{\beta}$. Hence G_{α} is dominating in $\Gamma_1(G)$.
- (c) \rightarrow (d). Let M_0 be the convex *l*-subgroup generated by all nonunits. M_0 has the following properties [3, p. 111]:
 - (1) G is a lexicographic extension of M_0 ;
 - (2) M_0 is a prime *l*-ideal or $M_0 = G$;
- (3) M_0 is the smallest convex *l*-subgroup of G that is comparable to all convex *l*-subgroups of G.
- Let G_{α} be a dominating element of $\Gamma_1(G)$. Using the properties of M_0 , it suffices to show that G_{α} is comparable to all convex *l*-subgroups of G. Let $K \in \Gamma(G)$; and assume $K \not\equiv G_{\alpha}$. For $x \in G_{\alpha}^+ K$, $x \notin K$ implies there exists a value for x, say G_{β} , such that $G_{\beta} \supseteq K$. Since G_{α} is dominating in $\Gamma_1(G)$, G_{α} is comparable to G_{β} . Thus, $x \in G_{\alpha}$ and $x \notin G_{\beta}$ imply that $G_{\beta} \subseteq G_{\alpha}$. Thus, $K \subseteq G_{\beta} \subseteq G_{\alpha}$ or $K \subseteq G_{\alpha}$.
- (d) \rightarrow (a). If G is a lexicographic extension of a proper l-ideal M, then $M \supseteq M_0$ (notation as in preceding proof); and moreover, there exists $G_\alpha \in \Gamma_1(G)$ with $G_\alpha \supseteq M_0$. Therefore, G_α is comparable to all convex l-subgroups of G. Thus G_α is dominating in $\Gamma_1(G)$; and $\Delta = \Gamma_1(G)$ satisfies condition (a).

In general, a maximal chain in a root system is not cofinal; but a maximal chain in a connected part, Δ_i , will be cofinal in Δ_i .

Theorem 8. $\Gamma_1(G)$ is connected and its special elements form a cofinal subset if and only if $G = \bigcup \{G_i : i \in \Lambda\}$ where $\{G_i : i \in \Lambda\}$ is a chain of convex l-subgroups each of which is Γ -indecomposable of the first kind.

Proof. Assume that $\Gamma_1(G)$ is connected and that its special elements are cofinal in $\Gamma_1(G)$. For each special G_i , choose $0 < g_i$, special, and with $G_i \in \Gamma g_i$. Note that $G_i \cap C(g_i) = M_i$ is the maximal convex *l*-subgroup of $C(g_i)$; and, moreover, $C(g_i)$ is a lexicographic extension of M_i . Thus, Theorem 6 implies that each $C(g_i)$ is Γ -indecomposable of the first kind. It will now be shown that G is the union of any

 $\{C(g_i): i \in I\}$ where the corresponding $\{G_i: i \in I\}$ is a chain of special G_i 's which is cofinal in $\Gamma_1(G)$. Suppose G_i is proper in G_j and $g_i \notin C(g_j)$; then, since G_i is the only value for g_i , $C(g_j) \subseteq G_i \subseteq G_j$ —a contradiction. Therefore, $g_i \in C(g_j)$, or $C(g_i) \subseteq C(g_j)$. Thus, $\{C(g_i): i \in I\}$ is chain order isomorphic to $\{G_i: i \in I\}$. Let

$$K = \bigcup \{C(g_i) : i \in I\}.$$

Then K is a convex I-subgroup of G. If $K \neq G$, there exists $G_{\alpha} \in \Gamma_1(G)$ such that $G_{\alpha} \supseteq K$. Since $\{G_i : i \in I\}$ is cofinal in $\Gamma_1(G)$, $G_{\alpha} \subseteq G_i$ for some $i \in I$. This implies that $g_i \notin K$ —contrary to the definition of K.

Conversely, assume that $G = \bigcup \{G_i : i \in \Lambda\}$ where each G_i is a convex *l*-subgroup of G which is Γ -indecomposable of the first kind and $\{G_i : i \in \Lambda\}$ is a chain. For $0 < x \in G$, $x \in G_i$ for some G_i ; and there exists a y such that $x \le y$ and y is a special element which has a special value G'_y which is dominating in $\Gamma_1(G_i)$. Since y is special, the convex *l*-subgroup generated by y in G_i is a lexicographic extension of a proper *l*-ideal. Since G_i is convex in G, the convex *l*-subgroup generated by y is the same for G as it is for G_i . Thus, C(y) is a lexicographic extension of a proper *l*-ideal. Therefore, y is special with value $G_y \in \Gamma_1(G)$. This implies that all values of x in $\Gamma_1(G)$ are contained in some special G_v —which, in turn, implies that the special elements are cofinal. To show $\Gamma_1(G)$ is connected it suffices to show two special elements G_{α} , G_{δ} are connected since they are cofinal in $\Gamma_1(G)$. Choose $z_1, z_2 > 0$, special, such that $G_{\alpha} \in \Gamma z_1$ and $G_{\delta} \in \Gamma z_2$. Since G is the union of the G_i , some G_j contains both z_1 and z_2 . G_j is assumed to be Γ -indecomposable; thus, there exists $z_3 > 0$ in G_j such that z_3 is special and $z_3 \ge z_1$, z_2 . But, the condition that $z_3 \ge z_1$, z_2 immediately implies that the values for z_1 and the values for z_2 are contained in the value for z_3 . Thus, if G_{β} is the value for z_3 in $\Gamma_1(G)$, then $G_{\beta} \supseteq G_{\alpha}$, G_{δ} —or any two special elements of $\Gamma_1(G)$ are connected.

3. Definition 9. Let Δ be a plenary subset of $\Gamma_1(G)$ and Δ_i a connected part of Δ . Then the union of the set of all x having all values with respect to Δ in Δ_i , together with zero, is denoted by H_i ; that is

$$H_i = \{x \in G : G_\alpha \in \Gamma x \cap \Delta \to G_\alpha \in \Delta_i\} \cup \{0\}.$$

PROPOSITION 10. H_i is a convex l-subgroup of G; and, moreover,

$$H_i = \bigcap \{G_{\delta} : G_{\delta} \in \Delta - \Delta_i\}.$$

Proof. Since the set of all convex *I*-subgroups forms a complete lattice, it need only be shown that $H_i = \bigcap \{G_{\delta} : G_{\delta} \in \Delta - \Delta_i\}$. Let $x \in H_i$ and $G_{\delta} \in \Delta - \Delta_i$. If $x \notin G_{\delta}$, then Δ plenary implies that there exists a value G_{α} of x in Δ such that $G_{\alpha} \supseteq G_{\delta}$. But $\Delta - \Delta_i$ being an upper class implies $G_{\alpha} \notin \Delta_i$, or $x \notin H_i$. Hence $x \in G_{\delta}$. Conversely, if $x \notin H_i$, then x has a value $G_{\delta} \in \Delta - \Delta_i$, and $x \notin G_{\delta}$.

We shall use the following properties from the notes of P. F. Conrad (proofs may be found in [6, Appendix]);

- (1) If $G_{H_i} = \{M : M \in \Gamma_0(G) \text{ and } M \not\supseteq H_i\}$, then $\sigma : G_{H_i} \to \Gamma_0(H_i)$, defined by $\sigma(M) = M \cap H_i$, is a one to one and onto mapping.
- (2) $G_{\alpha} \in G_{H_i} \cap \Gamma_1(G)$ if and only if $\sigma(G_{\alpha}) \in \Gamma_1(H_i)$. Furthermore, $G_{\alpha} \in \Gamma_X \cap G_{H_i}$, $x \in H_i$, if and only if $\sigma(G_{\alpha})$ is a value for x in $\Gamma_1(H_i)$.

PROPOSITION 11. σ is one to one from Δ_i to $\Gamma_1(H_i)$ if and only if $G_\alpha \in \Delta_i$ implies $G_\alpha \not\supseteq H_i$. If this is the case, $\sigma(\Delta_i)$ is a plenary subset of $\Gamma_1(H_i)$.

Proof. We need only show that under these conditions the image of Δ_i is plenary. Let $0 < x \in H_i$; then all the values of x in Δ are in Δ_i . Thus, there exists $G_\alpha \in \Gamma x \cap \Delta_i$ with $\sigma(G_\alpha)$ as a value for x in $\Gamma_1(H_i)$ —property 2, above. Suppose $\sigma(G_\alpha) \in \Gamma_1(H_i)$ and $0 < x \notin \sigma(G_\alpha)$ for $x \in H_i$. Then $x \notin G_\alpha$, and there exists $G_\beta \in \Delta_i$ such that $G_\beta \in \Gamma x$, $G_\alpha \subseteq G_\beta$. By property 2 above, $\sigma(G_\beta)$ is a value for x in $\Gamma_1(H_i)$. Since $G_\alpha \subseteq G_\beta$, $\sigma(G_\alpha) \subseteq \sigma(G_\beta)$. Therefore $\sigma(\Delta_i)$ is plenary in $\Gamma_1(H_i)$.

COROLLARY 12. If no G_{α} in Δ_i contains H_i , then H_i is Γ -indecomposable.

PROPOSITION 13. If no G_{α} in Δ_i contains H_i , then H_i is unbounded in G.

Proof. Assume H_i is bounded. Thus, there exists x in G^+ such that y < x for all $y \in H_i^+$. Since Δ is plenary, Δ_i contains a value G_α for x. By hypothesis, G_α does not contain H_i ; and hence, there exists $y \in H_i^+ - G_\alpha$. Consider first the case where G_α is maximal in Δ_i . Then y is special; and $G_\alpha = C(y)^* \oplus N$ where N is the maximal l-ideal of C(y). Moreover, $G^\alpha = C(y)^* \oplus C(y)$. Then, $0 < x \in G^\alpha$ implies the existence of $0 \le x_1 \in C(y)^*$, $0 \le x_2 \in C(y)$, such that $x_1 + x_2 = x$; and $x \notin C(y)^*$ implies that $0 < x_2$. Moreover, since $x_2 \in C(y)$, there exists n > 0 such that $0 < x_2 < ny$. Thus, using the fact that $x_1 \wedge ny = 0$, $ny = x \wedge ny = (x_1 + x_2) \wedge ny = (x_1 \wedge ny) + (x_2 \wedge ny) = x_2$, which is a contradiction. Assume, on the other hand, that G_α is not maximal in Δ_i . Then, there exists $G_\beta \in \Delta_i$ with $G^\alpha \subseteq G_\beta$. By hypothesis, there exists $z \in H_i^+ - G_\beta$. Since z < x implies the contradiction $z \in G^\alpha \subseteq G_\beta$, H_i must be unbounded.

PROPOSITION 14. If H_i is unbounded and Δ_i contains a dominating element, then $G = H_i \oplus H_i^*$. Moreover, H_i is a proper lexicographic extension of an l-ideal; and the mapping σ from Δ_i to $\Gamma_1(H_i)$ is one to one.

Proof. Let G_{α} be a dominating element of Δ_i . It will be shown that H_i is not contained in G_{α} . This fact immediately implies that no element of Δ_i contains H_i —or that the mapping from Δ_i to $\Gamma_1(H_i)$ is one to one. Thus, the image of Δ_i will provide H_i with a connected plenary subset with dominating element; and H_i is, therefore, a proper lexicographic extension of an I-ideal. Then, by applying the theorem mentioned in §1, part (x), $G = H_i \oplus H_i^*$ can be concluded.

Assume that $H_i \subseteq G_\alpha$. Let $0 < g \in G^\alpha - G_\alpha$. Since H_i was assumed unbounded, there exists $0 < h \in H_i$ such that $h \nleq g$. Also $h \gtrdot g$ since this would imply that $g \in H_i \subseteq G_\alpha$, contradicting the choice of g. Thus, g and h are not comparable. Let $g = g \land h + \bar{g}$, $h = g \land h + \bar{h}$ with $\bar{h} \land \bar{g} = 0$. The incomparability of g and h implies, moreover, that \bar{g} and \bar{h} are greater than 0. Since $g \land h \in H_i \subseteq G_\alpha$, $\bar{g} \in G^\alpha - G_\alpha$; and,

thus, $\bar{h} \wedge \bar{g} = 0$ implies that \bar{h} has no value comparable to G_{α} . But, $\bar{h} \in H_i$ implies that all values of \bar{h} in Δ are comparable to the dominating element G_{α} of Δ_i ; a contradiction.

THEOREM 15. If G is an l-group, then the following are equivalent:

- (a) there exists Δ plenary such that each Δ_i contains a cofinal chain of dominating special elements;
- (b) there exists Δ plenary such that each Δ_i contains a dominating element and each H_i is unbounded;
- (c) there exists Δ plenary such that for each i, $G = H_i^* \oplus H_i$ and H_i is Γ -indecomposable of the first kind;
- (d) G is l-isomorphic to a full subdirect sum of Γ -indecomposable l-groups of the first kind.

It is to be noted that the Γ -indecomposable *l*-groups mentioned in (d) are the H_i obtained from the choice of Δ as in (a) or (b). The proof of Theorem 15 depends upon the following lemma—the proof of which will appear later in this section.

LEMMA 16. If $\Pi = \Pi\{G_i : i \in I\}$, where each G_i is an l-group, and if G is a full subdirect sum of Π , then each $G_{\alpha} \in \Gamma_1(G)$ is classified by means of the projections π_i from G onto the G_i into one of the following two types:

[first type]: there exists one G_j such that $\pi_i(G_\alpha) = G_i$ for all $i \neq j$, $\pi_j(G_\alpha)$ is regular in G_j , and $G_\alpha = (\overline{G}_j \cap G_\alpha) \oplus \overline{G}_j^*$.

[second type]: $\pi_i(G_\alpha) = G_i$ for all i.

Moreover, the set of all G_{α} of the first type is plenary, and no G_{β} of the second type is connected to a G_{α} of the first type.

Proof of Theorem 15. (a) \rightarrow (b). It need only be shown that H_i is unbounded or, by Proposition 13, that no G_{α} in Δ_i contains H_i . By hypothesis on Δ_i , it suffices to show that no dominating special element G_{β} in Δ_i contains H_i . Let $0 < x \in G$ whose only value is G_{β} , then $x \in H_i$. Since $x \notin G_{\beta}$, we can conclude that $G_{\beta} \not\supseteq H_i$.

- (b) \rightarrow (c). This follows from Proposition 14.
- (c) \rightarrow (d). Let Δ be chosen as in (c). Then each $g \in G$ has a unique expression as $g^i + g_i$, $g^i \in H_i^*$, $g_i \in H_i$. Define ϕ_i by $\phi_i(g) = g_i$. Then ϕ_i is an l-homomorphism for each i. Let ϕ denote the induced l-homomorphism from G to $\Pi\{H_i : i \in I(\Delta)\}$. We need only show that ϕ is one to one. If $\phi(g) = 0$, $g \ge 0$, then $g_i = 0$ for all i. Let us now assume that the values for $x \in H_i$, i in the index set of Δ , are cofinal in Δ_i for each i. The assumption will be proved in the following paragraph. Suppose $g \ne 0$, then g has a value $G_\beta \in \Delta_i$ for some i. From the foregoing assumption, $G_\beta \subseteq G_\alpha \in \Gamma x$, $0 < x \in H_i$. Thus, $0 < x \land g = x \land (g^i + g_i) = (x \land g^i) + (x \land g_i)$ which implies $g_i > 0$ since $g^i \land x = 0$ —a contradiction. g = 0 implies ϕ is one to one and an l-isomorphism into. Since for each $g_i \in H_i \subseteq G$, $\phi(g_i)$ is equal to the element 0 in all except the ith coordinate and is g_i in the ith coordinate, $\phi(G)$ contains $\Sigma \oplus H_i$.

Since H_i is Γ -indecomposable of the first kind, by Theorem 7 there exists $G_{\gamma} \in \Gamma_1(H_i)$ such that G_{γ} is a value for a special element $0 < x \in H_i$. As in Proposition 11, $\sigma(G_{\alpha}) = G_{\alpha} \cap H_i = G_{\gamma}$ and G_{α} is the only value for x in G. Suppose $G_{\beta} \supseteq G_{\alpha}$ and $G_{\beta} \in \Gamma y$, y > 0. Let $y = y^i + y_i$, $0 \le y^i \in H_i^*$ and $0 \le y_i \in H_i$. Since $y^i \wedge x = 0$, y^i can have no value comparable to G_{α} . Thus, $G_{\beta} \in \Gamma y_i$, $y_i \in H_i$; or, the values for $x \in H_i$ are cofinal in Δ_i .

(d) \rightarrow (a). Assume that G is a full subdirect sum of Γ -indecomposable I-groups, E_i , $i \in I$, each of which is Γ -indecomposable of the first kind. By Lemma 16, the regular subgroups of the first type form a plenary subset Δ of $\Gamma_1(G)$. Moreover, $\Delta_i = \{G_\alpha : \pi_i(G_\alpha) \in \Gamma_1(E_i)\}$ is just the set of all $G_\alpha \in \Gamma_1(G)$ such that $G_\alpha \not\equiv \overline{E}_i$. Moreover, $\bigcup \{\Delta_i : i \in I\}$ is Δ . Thus the mapping $G_\alpha \to G_\alpha \cap \overline{E}_i$ is a one to one, onto, order preserving mapping from Δ_i to $\Gamma_1(\overline{E}_i)$. Since E_i is I-isomorphic to \overline{E}_i , Δ_i is connected with a cofinal sequence of dominating special elements by Theorem 7. Since any two elements from different Δ_i will necessarily be not comparable, Δ satisfies condition (a).

Proof of Lemma 16. Assume G_{α} is a regular subgroup of G which is not of the second type. The negation of the second type implies that there exists $i \in I$ such that $\pi_i(G_{\alpha}) \neq G_i$. Moreover, since G contains the small sum it can be extracted from [7] that $G = \overline{G_i} \oplus \overline{G_i}^*$. Since G_{α} is not of the second type $G_{\alpha} \not\equiv \overline{G_i}$; and, thus, $\overline{G_i}^* \subseteq G_{\alpha}$ since G_{α} is prime. Hence, $G_{\alpha} = (G_{\alpha} \cap \overline{G_i}) \oplus \overline{G_i}^*$. Thus $\pi_i(G_{\alpha}) = G_{\alpha} \cap \overline{G_i} = \sigma(G_{\alpha})$, in the notation of Proposition 11, and so is regular. The conclusion that no first type element is connected to a second type element follows from the fact that $G = G_{\alpha} \vee G_{\beta}$ where G_{α} is of the first type and G_{β} is of the second type.

The following corollary illustrates an alternative way of looking at Theorem 7.2 of [2]. Since a proof of the corresponding theorem is given in [2], the proof will not be given here. Before stating the corollary we need two definitions.

DEFINITION 17. $0 < b \in G$ is a basic element if C(b) is totally ordered.

DEFINITION 18. G has a basis if for every $0 < x \in G$ there exists a basic element b such that $0 < b \le x$. The basis group for G is the convex l-subgroup generated by the basic elements in G.

COROLLARY 19. If G is an l-group, then the following are equivalent:

- (a) G has a basis and no maximal convex o-subgroup of the basis group is bounded;
- (b) there exists Δ plenary such that each Δ_i is a chain of special elements of $\Gamma_1(G)$;
- (c) G is l-isomorphic to a full subdirect sum of a cardinal sum of o-groups.

It is noted that the o-groups referred to in (c) are the H_i derived from a choice of Δ as in (b).

4. Definition 20. For a plenary set Δ , the Δ_i -subgroup M_i is the convex *l*-subgroup formed by intersecting the elements of Δ_i ; i.e., $M_i = \bigcap \{G_\alpha : G_\alpha \in \Delta_i\}$.

PROPOSITION 21. If M_i is a normal Δ_i -subgroup, then G/M_i is Γ -indecomposable.

Proof. The natural *l*-homomorphism of G onto G/M_i preserves the lattice structure of the set of all $H \in \Gamma(G)$ such that $H \supseteq M_i$. Thus, Δ_i is mapped onto a plenary set for G/M_i and is connected.

PROPOSITION 22. Every maximal element of $\Gamma(G)$ is normal if and only if each connected part of $\Gamma_1(G)$, Γ_i , is invariant under inner automorphisms of G.

Proof. First assume all maximal elements of $\Gamma(G)$ are normal. Let $G_{\alpha} \in \Gamma_{i}$ and 0 < x with $x + G_{\alpha} - x \neq G_{\alpha}$. Thus, $x \notin G_{\alpha}$ which implies that there exists $G_{\beta} \in \Gamma_{x}$ such that $G_{\alpha} \subseteq G_{\beta}$. If G_{β} is maximal in $\Gamma(G)$, then $x + G_{\beta} - x = G_{\beta} \supseteq G_{\alpha}$ and $x + G_{\alpha} - x$. Thus, $x + G_{\alpha} - x \in \Gamma_{i}$. If G_{β} is not maximal in $\Gamma(G)$, then there exists $G_{\gamma} \supseteq G_{\beta}$ and $x \in G_{\gamma}$. Thus, $x + G_{\gamma} - x = G_{\gamma} \supseteq G_{\alpha}$ and $x + G_{\alpha} - x$ which implies that $x + G_{\alpha} - x \in \Gamma_{i}$. For the converse assume G_{α} is maximal in $\Gamma(G)$. Thus, G_{α} is the maximal element of some Γ_{i} . Since Γ_{i} is invariant, for each $x \in G_{\gamma} - x + G_{\alpha} + x \in \Gamma_{i}$ and, thus, $G_{\alpha} \supseteq -x + G_{\alpha} + x$. Since x was arbitrary G_{α} is normal.

PROPOSITION 23. If the maximal elements of $\Gamma(G)$ are normal, then the Γ_i -subgroups M_i are all normal.

Proof. Suppose $y \in M_i$ and $x+y-x \notin M_i$. Then x+y-x has a value in Γ_i since $M_i = \bigcap \{G_\alpha \in \Gamma_i\}$. $y \in M_i$ implies y does not have a value in Γ_i . Let $G_\alpha \in \Gamma_i$ such that $G_\alpha \in \Gamma x + y - x$. Thus, $-x + G_\alpha + x$ does not contain y which implies that $-x + G_\alpha + x \in \Gamma_j$ for $j \neq i$. Therefore Γ_i is not invariant under inner automorphisms and this contradicts Proposition 22.

THEOREM 24. If $\{M_j: j \in J\}$ is a collection of normal Δ_i -subgroups such that $\bigcap \{M_j: j \in J\} = \{0\}$, then G is l-isomorphic to a subdirect sum of Γ -indecomposable l-groups.

Proof. The natural homomorphism from G to G/M_j is an onto I-homomorphism, for each $j \in J$. Thus, the induced mapping $x \to x + M_j$ will be an I-homomorphism of G onto a subdirect sum of the G/M_j . Since $\bigcap \{M_j : j \in J\} = \{0\}$, this mapping will be one to one.

COROLLARY 25. If G has a collection of normal primes N_t , $t \in T$ such that $\bigcap \{N_t : t \in T\} = \{0\}$, then G is l-isomorphic to a subdirect sum of Γ -indecomposable l-groups.

Proof. Let $\Delta = \{G_{\alpha} \in \Gamma_1(G) : G_{\alpha} \supseteq N_t \text{ for some } t \in T\}$. Δ is plenary; and any Δ_i -subgroup, M_i , will be an intersection of a subcollection of the N_t . Thus, the Δ_i -subgroups will be normal and $\bigcap \{M_i : M_i \text{ the } \Delta_i\text{-subgroup}\} = \bigcap \{N_t : t \in T\} = \{0\}$. Now, apply Theorem 24.

It is relatively easy to exhibit a counterexample to show that the converse of Corollary 25 is not true. Thus, since the hypothesis of the corollary is trivially equivalent to representability as a subdirect sum of o-groups it follows that representability as a subdirect sum of o-groups implies representability as a subdirect sum of Γ -indecomposable I-groups with the converse false.

COROLLARY 26. If the maximal elements of $\Gamma(G)$ are normal, then G is l-isomorphic to a subdirect sum of Γ -indecomposable l-groups.

Proof. Apply Proposition 23 and Theorem 24.

BIBLIOGRAPHY

- 1. G. Birhoff, *Lattice theory*, rev. ed., Amer. Math. Soc. Colloq. Publ., Vol. 25, Amer. Math. Soc., Providence, R. I., 1948.
- 2. P. F. Conrad, Some structure theorems for lattice ordered groups, Trans. Amer. Math. Soc. 99 (1961), 212-240.
- 3. ——, The lattice of all convex l-subgroups of a lattice ordered group, Czechoslovak Math. J. 15 (1965), 101-123.
- 4. P. F. Conrad, J. Harvey and C. Holland, *The Hahn embedding theorem for abelian lattice ordered groups*, Trans. Amer. Math. Soc. 108 (1963), 143-169.
 - 5. L. Fuchs, Partially ordered algebraic systems, Addison-Wesley, Reading, Mass., 1963.
- 6. F. Pedersen, Contributions to the theory of regular subgroups and prime subgroups of a lattice ordered group, Tulane Dissertation, New Orleans, La., 1966.
- 7. F. Sik, Zur Theorie der halbegeordneten Gruppen, Czechoslovak Math. J. 6 (1956), 1-25. (Russian. German summary)

SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE, ILLINOIS